Patterned Live Neural Networks by Induced Electrical Fields for Bio-Sensing

نویسندگان

  • Shalini Prasad
  • Mo Yang
  • Xuan Zhang
  • Cengiz S. Ozkan
  • Mihrimah Ozkan
چکیده

It is estimated that about 18 million people worldwide suffer from dementia and it is projected to increase to about 35 million by the year 2025. All types of dementia occur due to an aberration in memory retention and development, caused by malfunctioning neurons. Experimental investigation of the dynamics of biological networks is a fundamental step towards understanding how the nervous system works. Activity-dependant modification of synaptic strength is widely recognized as cellular basis of learning, memory and developmental plasticity. Understanding memory formation and development, thus translates to changes in the electrical activity of the neurons. It is not possible to achieve this understanding at a cellular level by in vivo studies. To map the changes in the electrical activity it is essential to conduct in-vitro studies on individual neurons. Hence there is an enormous need to develop novel ways for assembly of highly controlled neuronal networks. To this end, we used a 5x5 multiple microelectrode array system to spatially arrange neurons, by combination of applied DC and AC fields We characterized electric field distribution inside our test platform by using two dimensional finite element modeling (FEM). As the first stage in the formation of a neural network dielectrophoretic AC fields were used to position the neurons over the electrodes. We used DC electric field to control axon growth direction within the network. Applied electric field direction is found to be an important parameter for axon growth. Electrical impulses were recorded from the individual neurons in the network during positioning and network formation. Materials and Methods We employed dielectrophoretic forces in our experiment to achieve the separation of neurons from glial cells. Dielectrophoretic cell separation exploits dielectrophoretic forces that are created on cells when a non uniform electrical field interacts with the fieldinduced electrical polarization on the cells. Depending on the dielectric properties of the cells relative to the suspending medium, these forces can be either positive or negative and can direct the cells toward strong or weak electrical field regions, where cells with distinct intrinsic dielectric properties can be controlled. Figure 1 depicts the principle of action of dielectrophoretic forces on mammalian cells. The Force equation for dielectrophoresis and the cross over frequency (fCM) are also shown. The cross over frequency is that frequency at which a particle does not experience any dielectrophoretic force for a given solution conductivity, applied amplitude and applied frequency. The substrate has a 5x5 electrode array pattern, with electrode diameter of 80mm with a 200mm center to center spacing and covering an area of 0.8x0.8 mm. Two platinum plated leads (6mm, thick) from each electrode terminate at two separate electrode pads. The dimension of the electrode pads are 100mm x 20mm. The electrode array is shown in figure 2. Figure 1. Representation of the principle of action of dielectrophoretic forces on mammalian cells. Figure 2. Optical micrograph of the 5x5 electrode array. 80 μm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectrum Sensing Data Falsification Attack in Cognitive Radio Networks: An Analytical Model for Evaluation and Mitigation of Performance Degradation

Cognitive Radio (CR) networks enable dynamic spectrum access and can significantly improve spectral efficiency. Cooperative Spectrum Sensing (CSS) exploits the spatial diversity between CR users to increase sensing accuracy. However, in a realistic scenario, the trustworthy of CSS is vulnerable to Spectrum Sensing Data Falsification (SSDF) attack. In an SSDF attack, some malicious CR users deli...

متن کامل

Efficient Parameters Selection for CNTFET Modelling Using Artificial Neural Networks

In this article different types of artificial neural networks (ANN) were used for CNTFET (carbon nanotube transistors) simulation. CNTFET is one of the most likely alternatives to silicon transistors due to its excellent electronic properties. In determining the accurate output drain current of CNTFET, time lapsed and accuracy of different simulation methods were compared. The training data for...

متن کامل

Attack-Aware Cooperative Spectrum Sensing in Cognitive Radio Networks under Byzantine Attack

Cooperative Spectrum Sensing (CSS) is an effective approach to overcome the impact of multi-path fading and shadowing issues. The reliability of CSS can be severely degraded under Byzantine attack, which may be caused by either malfunctioning sensing terminals or malicious nodes. Almost, the previous studies have not analyzed and considered the attack in their models. The present study introduc...

متن کامل

Two-curve-shaped biosensor using photonic crystal nano-ring resonators

We design a novel nano-ring resonator using two-dimensional photonic crystal (2D-PhC), for bio-sensing applications. The structure of biosensor is created by two-curve-shaped ring resonator which sandwiched by two waveguides. These are configured by removing one row of air holes. The refractive index of sensing hole is changed by binding an analyte. Hence, intensity of the transmission spectrum...

متن کامل

Adaptive Leader-Following and Leaderless Consensus of a Class of Nonlinear Systems Using Neural Networks

This paper deals with leader-following and leaderless consensus problems of high-order multi-input/multi-output (MIMO) multi-agent systems with unknown nonlinear dynamics in the presence of uncertain external disturbances. The agents may have different dynamics and communicate together under a directed graph. A distributed adaptive method is designed for both cases. The structures of the contro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004